Devoir n°3 50 minutes

Dans une piscine, un élève plonge une éprouvette graduée de 15 cm de hauteur retournée et préalablement remplie d'air et la descend jusqu'au fond, soit à 2,00 m de profondeur. Il remarque que l'eau a pénétré de 2,4 cm à l'intérieur de l'éprouvette (voir l'illustration cicontre).

↑ 2,4 cm

Données

- Masse volumique de l'eau : ρ = 998 kg·m⁻³
- Intensité du champ de pesanteur : $g = 9.81 \text{ N} \cdot \text{kg}^{-1}$
- Pression atmosphérique au niveau de la mer : 1,01·10⁵ Pa
- Volume d'un cylindre de section S et de hauteur $h: V = S \cdot h$.
- **1.a.** Donner l'expression de la loi fondamentale de l'hydrostatique en explicitant les différents termes qui y apparaissent et en précisant leur unité.
- **1.b.** À l'aide de cette loi, calculer la pression au fond de la piscine.
- **2.a.** Expliquer pourquoi le volume d'air dans l'éprouvette a diminué lorsqu'elle est placée au fond de la piscine.
- **2.b.** Retrouver la valeur de 2,4 cm par le calcul.
- **3.** Quelle est l'erreur relative sur la pression, en %, si on néglige les 2,4 cm de différence entre la profondeur de la piscine et la profondeur de la surface de l'eau dans l'éprouvette ?

Correction

1.a.
$$P = \rho g h + P_0$$

Avec P la pression dans le fluide (Pa) à la profondeur h (m), ρ la masse volumique du fluide (kg·m⁻³), g l'intensité du champ de pesanteur (N·kg⁻¹) et P_0 la pression à la surface du fluide (Pa).

[1] [1]

1.b.
$$P = 998 \times 9.81 \times 2 + 1.01 \cdot 10^5 = 1.206 \cdot 10^5 \text{ Pa}$$

2.a. La pression exercée par l'eau sur l'air dans l'éprouvette est supérieure à la pression atmosphérique. Donc le volume d'air diminue. [1]

2.b. Il suffit d'appliquer la loi de Mariotte. On appelle V_0 le volume d'air contenu dans l'éprouvette à la surface et P_0 la pression atmosphérique, V_1 le volume d'air contenu dans l'éprouvette au fond de la piscine et P_1 la pression au fond de la piscine (1,21·10⁵ Pa).

On appelle h_0 la hauteur de l'éprouvette et h_1 la hauteur de l'air dans l'éprouvette quand elle est placée au fond de la piscine.

$$P_0V_0 = P_1V_1$$

$$P_0Sh_0 = P_1Sh_1$$

$$h_1 = \frac{P_0}{P_1}h_0$$

Et donc h_1 = 1,01÷1,21×15 \simeq 12,6 cm.

La hauteur de la colonne n'est plus que de 12,6 cm. C'est donc que l'eau est rentrée dans l'éprouvette d'une hauteur de 15 - 12,6 = 2,4 cm. [2]

3. À 2,00 m, la pression est de 1,206·10⁵ Pa. À 1,976 m (c'est-à-dire à 2,00 – 0,024), la pression est de 1,203·10⁵ Pa. L'erreur commise sur la pression est d'environ 0,25 %. [1]