Devoir n°6 Titrage du SO₂ dans des rejets gazeux 35 minutes

On souhaite mesurer le taux de dioxyde de soufre SO_2 dans les rejets gazeux d'une centrale thermique. Pour cela, on récupère la totalité du dioxyde de souffre contenu dans un volume V_{gaz} = 10.0 m^3 de rejets gazeux en les dissolvant dans 1.00 L d'eau. On obtient une solution appelée S_0 .

Par la suite, on dose un volume $V_0 = 50.0$ mL de la solution S_0 à l'aide d'une solution aqueuse de permanganate de potassium ($K^+_{(aq)} + MnO_{4^-(aq)}$) de concentration $c_1 = 1,00 \cdot 10^{-4}$ mol·L⁻¹.

L'équation-bilan de la réaction de titrage est :

$$2 \text{ MnO}_{4^{-}} + 5 \text{ SO}_{2} + 2 \text{ H}_{2}\text{O} \rightarrow 2 \text{ Mn}^{2+} + 5 \text{ SO}_{4^{2-}} + 4 \text{ H}^{+}$$

Parmi les espèces chimiques impliquée dans cette réaction, seul l'ion permanganate MnO₄- est coloré (coloration violette très intense).

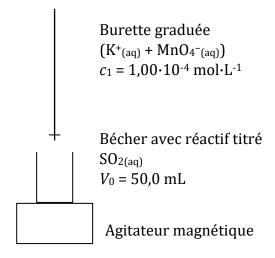
On obtient un volume à l'équivalence V_{1E} = 10,8 mL.

Données

- Masse molaire du dioxyde de soufre : $M(SO_2) = 64,1 \text{ g} \cdot \text{mol}^{-1}$
- Couples rédox : SO_4^{2-}/SO_2 et MnO_4^{-}/Mn^{2+}

Questions

- **1.** Retrouver l'équation-bilan de la réaction de titrage à l'aide des couples rédox fournis. Vous détaillerez les différentes étapes de votre raisonnement.
- 2. Faire un schéma légendé du montage expérimental.
- 3. Comment peut-on repérer visuellement l'équivalence?
- **4.a.** Dresser le tableau d'avancement de la réaction. Vous noterez n_0 la quantité de matière initiale contenu dans le volume V_0 de solution S_0 dosée et n_1 la quantité de matière d'ions MnO_4 versée à un moment quelconque (pas nécessairement à l'équivalence vous raisonnerez sur une valeur de n_1 quelconque).
- **4.b.** Donner la relation entre la quantité de matière d'ions permanganate versée à l'équivalence, notée n_{1E} et la quantité initiale n_0 de dioxyde de soufre contenue dans le volume V_0 .
- **5.** Calculer la concentration c_0 de dioxyde de soufre dans la solution S_0 .
- **6.** Les normes anti-pollution imposent une limite de $500 \,\mu\text{g}\cdot\text{m}^{-3}$ en SO_2 dans les gaz rejetés par les centrale thermique. Les rejets testés respectent-ils cette norme ?


Correction

1. On écrit d'abord les demi-équations

Ensuite, on détermine dans quel sens se fait chaque demi-réaction ainsi que le multiplicateur de chaque demi-réaction permettant d'équilibrer les électrons cédés et les électrons reçus.

$$SO_4^{2-}/SO_2$$
: $SO_4^{2-} + 2 e^- + 4 H^+ \leftarrow SO_2 + 2 H_2O$ ×5
 MnO_4^-/Mn^{2+} : $MnO_4^- + 5 e^- + 8 H^+ \rightarrow Mn^{2+} + 4 H_2O$ ×2

On associe les deux demi-équations et on simplifie l'eau et les ions H+ pour trouver l'équation-bilan donnée dans l'énoncé.

A- si « pipette jaugée » au lieu de « burette graduée » D si schéma OK sans légende

3. Avant l'équivalence, aucune espèce colorée n'est présente car l'ion MnO₄- réagit immédiatement avec le SO₂ titré. Après l'équivalence, il n'y a plus de SO₂ pour réagir avec les ions MnO₄-, donc la coloration violette de ces dernier va persister.

4.a. Tableau d'avancemen	[1]

Avancement	2 MnO ₄ - +	- 5 SO ₂ +	- 2 H ₂ O -	→ 2 Mn ²⁺	+ 5 SO ₄ ²⁻ +	- 4 H+
0	n_1	n_0		0	0	0
x	$n_1 - 2x$	$n_0 - 5x$	solvant	2 <i>x</i>	5 <i>x</i>	4 <i>x</i>
x_{max}	$n_1 - 2x_{max}$	$n_0 - 5x_{max}$		$2x_{max}$	$5x_{max}$	$4x_{max}$

$$x_{max} = \min\left(\frac{n_1}{2}; \frac{n_0}{5}\right)$$

4.b. D'après l'équation-bilan de la réaction de titrage, on peut écrire :

$$\frac{n_0}{5} = \frac{n_{1E}}{2}$$

5. D'après la relation précédente :

$$c_0 = \frac{5}{2} \cdot \frac{c_1 V_{1E}}{V_0} = 5.4 \cdot 10^{-5} \text{ mol/L}$$

6. $c_0 = 5,4 \cdot 10^{-5} \text{ mol} \cdot \text{L}^{-1}$. Donc il y a $5,4 \cdot 10^{-5} \text{ mol}$ de SO_2 dans les 1,00 L de S_0 et donc dans les 10 m^3 de gaz. Cela représente une masse de $5,4 \cdot 10^{-5} \times 64,1 = 3,46 \text{ mg}$ de SO_2 .

Donc, dans chaque m³, il y a 0,346 mg soit 346 µg.

On est en-dessous du seuil de pollution fixé par les normes.

[1]

[1]